首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   30494篇
  免费   1397篇
  国内免费   2439篇
测绘学   1789篇
大气科学   3409篇
地球物理   5959篇
地质学   14579篇
海洋学   1832篇
天文学   2012篇
综合类   2770篇
自然地理   1980篇
  2024年   17篇
  2023年   111篇
  2022年   305篇
  2021年   342篇
  2020年   274篇
  2019年   278篇
  2018年   5039篇
  2017年   4279篇
  2016年   2894篇
  2015年   557篇
  2014年   471篇
  2013年   416篇
  2012年   1332篇
  2011年   3055篇
  2010年   2348篇
  2009年   2637篇
  2008年   2203篇
  2007年   2632篇
  2006年   283篇
  2005年   372篇
  2004年   577篇
  2003年   557篇
  2002年   420篇
  2001年   225篇
  2000年   232篇
  1999年   311篇
  1998年   329篇
  1997年   279篇
  1996年   281篇
  1995年   209篇
  1994年   189篇
  1993年   147篇
  1992年   119篇
  1991年   96篇
  1990年   100篇
  1989年   77篇
  1988年   62篇
  1987年   59篇
  1986年   45篇
  1985年   27篇
  1984年   22篇
  1983年   11篇
  1982年   15篇
  1981年   35篇
  1980年   29篇
  1979年   5篇
  1978年   3篇
  1977年   3篇
  1976年   10篇
  1936年   3篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Reservoir landslides pose a great threat to shipping safety, human lives and properties, and the operation of the hydropower station. In this paper, the 24 June 2015 Hongyanzi landslide at the Three Gorges Reservoir is considered as an example to study the initiation mechanism and landslide-generated wave process of a reservoir landslide. The finite difference method and limit equilibrium analysis are used to analyze the deformation and failure characteristics of the Hongyanzi slope. Simulation results show that a large deformation (about 358 mm) happens in the shallow deposits under intermittent rainfall condition, and the slope is in a limit state. At the same time, continuous rapid drawdown of the water level (about ?0.55 m/day during 8–24 June 2015) reduced the support and accelerated the drainage of the water for the bank slope. A coupling effect of intermittent rainfall and rapid drawdown of the water level was the triggering factor of the 24 June Hongyanzi landslide. Landslide-generated wave process was simulated using a fluid–solid coupling method by integrating the general moving object collision model. Simulation results show that the landslide-generated wave is dominated by the impulse wave, which is generated by sliding masses entering the river with high speed. The maximum wave height is about 5.90 m, and the wave would decay gradually as it spreads because of friction and energy dissipation. To prevent reservoir landslides, the speed for the rising or drawdown of the water level should be controlled, and most importantly, rapid drawdown should be avoided.  相似文献   
992.
The town of Santa Teresa (Cusco Region, Peru) has been affected by several large debris-flow events in the recent past, which destroyed parts of the town and resulted in a resettlement of the municipality. Here, we present a risk analysis and a risk management strategy for debris-flows and glacier lake outbursts in the Sacsara catchment. Data scarcity and limited understanding of both physical and social processes impede a full quantitative risk assessment. Therefore, a bottom-up approach is chosen in order to establish an integrated risk management strategy that is robust against uncertainties in the risk analysis. With the Rapid Mass Movement Simulation (RAMMS) model, a reconstruction of a major event from 1998 in the Sacsara catchment is calculated, including a sensitivity analysis for various model parameters. Based on the simulation results, potential future debris-flows scenarios of different magnitudes, including outbursts of two glacier lakes, are modeled for assessing the hazard. For the local communities in the catchment, the hazard assessment is complemented by the analysis of high-resolution satellite imagery and fieldwork. Physical, social, economic, and institutional vulnerability are considered for the vulnerability assessment, and risk is eventually evaluated by crossing the local hazard maps with the vulnerability. Based on this risk analysis, a risk management strategy is developed, consisting of three complementing elements: (i) standardized risk sheets for the communities; (ii) activities with the local population and authorities to increase social and institutional preparedness; and (iii) a simple Early Warning System. By combining scientific, technical, and social aspects, this work is an example of a framework for an integrated risk management strategy in a data scarce, remote mountain catchment in a developing country.  相似文献   
993.
To determine the role of mangroves for fisheries in the arid region of the Persian Gulf, we investigated fish community structure and trophic diversity in intertidal creeks with and without mangroves. Fish community abundances and biomass were compared across habitats and seasons. To identify variations in overall community trophic niches among habitats and seasons, we measured niches with size-corrected standard ellipse areas (SEAc) calculated from C and N stable isotope values. Although there was a slightly greater species richness occurred in mangrove creeks, we found a general similarity in the diversity patterns in creeks with and without mangroves. Also, there were no consistent differences in fish abundance or biomass for mangrove vs. non-mangrove fish collections. Community trophic diversity measured as SEAc also showed no significant difference between mangrove and non-mangrove sites. Instead, strong seasonal patterns were observed in the fish assemblages. Winter samples had consistently higher fish abundance and biomass than summer samples. Winter SEAc values were significantly higher, indicating that the fish community had a larger isotopic niche in winter than summer. Overall, we found that seasonality was much stronger than habitat in determining fish community structure and trophic diversity in the mangrove and non-mangrove ecosystems of Qeshm Island, Iran.  相似文献   
994.
Planktonic larvae combine directed swimming and functional sensory systems to locate benthic habitats. Some adult marine fishes use chemical cues for orientation to specific habitats, but olfactory function for estuarine fish larvae has received little research attention. This laboratory study quantified behavioral responses of red drum (Sciaenops ocellatus) larvae to estuarine chemical cues to examine the role of water chemistry as an orientation cue for locating or remaining in settlement habitat. Spontaneous activity (kinesis) was measured for pre-settlement-size larvae exposed to artificial sea water (as a negative control) and one of six treatments (sterilized sea water, sea water from a channel at ebb tide, sea water from a channel at flood tide, sea water from seagrass habitat, tannic acid dissolved in sterilized sea water, or lignin dissolved in sterilized sea water). Larvae that reached a size of competency to settle (approximately 10 mm standard length) swam faster when exposed to lignin dissolved in sterilized sea water than in other treatments; smaller larvae showed no response. Olfactory preference (taxis) was tested using a paired-choice experiment. Settlement-size larvae preferred water from seagrass beds to artificial sea water. The observed chemokinesis and chemotaxis in response to lignin dissolved in sterilized sea water and sea water from a seagrass bed demonstrate that red drum larvae can distinguish and respond to different water masses and suggest that chemical stimuli from seagrass settlement habitat may aid in orientation and movement to or retention in suitable settlement sites.  相似文献   
995.
Subsidence of organic soils in the Sacramento-San Joaquin Delta threatens sustainability of the California (USA) water supply system and agriculture. Land-surface elevation data were collected to assess present-day subsidence rates and evaluate rice as a land use for subsidence mitigation. To depict Delta-wide present-day rates of subsidence, the previously developed SUBCALC model was refined and calibrated using recent data for CO2 emissions and land-surface elevation changes measured at extensometers. Land-surface elevation change data were evaluated relative to indirect estimates of subsidence and accretion using carbon and nitrogen flux data for rice cultivation. Extensometer and leveling data demonstrate seasonal variations in land-surface elevations associated with groundwater-level fluctuations and inelastic subsidence rates of 0.5–0.8 cm yr–1. Calibration of the SUBCALC model indicated accuracy of ±0.10 cm yr–1 where depth to groundwater, soil organic matter content and temperature are known. Regional estimates of subsidence range from <0.3 to >1.8 cm yr–1. The primary uncertainty is the distribution of soil organic matter content which results in spatial averaging in the mapping of subsidence rates. Analysis of leveling and extensometer data in rice fields resulted in an estimated accretion rate of 0.02–0.8 cm yr–1. These values generally agreed with indirect estimates based on carbon fluxes and nitrogen mineralization, thus preliminarily demonstrating that rice will stop or greatly reduce subsidence. Areas below elevations of –2 m are candidate areas for implementation of mitigation measures such as rice because there is active subsidence occurring at rates greater than 0.4 cm yr–1.  相似文献   
996.
Small alpine valleys usually show a heterogeneous hydraulic situation. Recurring landslides create temporal barriers for the surface runoff. As a result of these postglacial processes, temporal lakes form, and thus lacustrine fine-grained sedimentation intercalates with alluvial coarse-grained layers. A sequence of alluvial sediments (confined and thus well protected aquifers) and lacustrine sediments (aquitards) is characteristic for such an environment. The hydrogeological situation of fractured hard-rock aquifers in the framing mountain ranges is characterized by superficially high hydraulic conductivities as the result of tectonic processes, deglaciation and postglacial weathering. Fracture permeability and high hydraulic gradients in small-scaled alpine catchments result in the interaction of various flow systems in various kinds of aquifers. Spatial restrictions and conflicts between the current land use and the requirements of drinking-water protection represent a special challenge for water resource management in usually densely populated small alpine valleys. The presented case study describes hydrogeological investigations within the small alpine valley of the upper Gurktal (Upper Carinthia, Austria) and the adjacent Höllenberg Massif (1,772 m above sea level). Hydrogeological mapping, drilling, and hydrochemical and stable isotope analyses of springs and groundwater were conducted to identify a sustainable drinking-water supply for approximately 1,500 inhabitants. The results contribute to a conceptual hydrogeological model with three interacting flow systems. The local and the intermediate flow systems are assigned to the catchment of the Höllenberg Massif, whereas the regional flow system refers to the bordering Gurktal Alps to the north and provides an appropriate drinking water reservoir.  相似文献   
997.

Background

The interaction between Ca-HAP and Pb2+ solution can result in the formation of a hydroxyapatite–hydroxypyromorphite solid solution [(PbxCa1?x)5(PO4)3(OH)], which can greatly affect the transport and distribution of toxic Pb in water, rock and soil. Therefore, it’s necessary to know the physicochemical properties of (PbxCa1?x)5(PO4)3(OH), predominantly its thermodynamic solubility and stability in aqueous solution. Nevertheless, no experiment on the dissolution and related thermodynamic data has been reported.

Results

Dissolution of the hydroxypyromorphite–hydroxyapatite solid solution [(PbxCa1?x)5(PO4)3(OH)] in aqueous solution at 25 °C was experimentally studied. The aqueous concentrations were greatly affected by the Pb/(Pb + Ca) molar ratios (XPb) of the solids. For the solids with high XPb [(Pb0.89Ca0.11)5(PO4)3OH], the aqueous Pb2+ concentrations increased rapidly with time and reached a peak value after 240–720 h dissolution, and then decreased gradually and reached a stable state after 5040 h dissolution. For the solids with low XPb (0.00–0.80), the aqueous Pb2+ concentrations increased quickly with time and reached a peak value after 1–12 h dissolution, and then decreased gradually and attained a stable state after 720–2160 h dissolution.

Conclusions

The dissolution process of the solids with high XPb (0.89–1.00) was different from that of the solids with low XPb (0.00–0.80). The average K sp values were estimated to be 10?80.77±0.20 (10?80.57–10?80.96) for hydroxypyromorphite [Pb5(PO4)3OH] and 10?58.38±0.07 (10?58.31–10?58.46) for calcium hydroxyapatite [Ca5(PO4)3OH]. The Gibbs free energies of formation (ΔG f o ) were determined to be ?3796.71 and ?6314.63 kJ/mol, respectively. The solubility decreased with the increasing Pb/(Pb + Ca) molar ratios (XPb) of (PbxCa1?x)5(PO4)3(OH). For the dissolution at 25 °C with an initial pH of 2.00, the experimental data plotted on the Lippmann diagram showed that the solid solution (PbxCa1?x)5(PO4)3(OH) dissolved stoichiometrically at the early stage of dissolution and moved gradually up to the Lippmann solutus curve and the saturation curve for Pb5(PO4)3OH, and then the data points moved along the Lippmann solutus curve from right to left. The Pb-rich (PbxCa1?x)5(PO4)3(OH) was in equilibrium with the Ca-rich aqueous solution.
Graphical abstractLippmann diagrams for dissolution of the hydroxypyromorphite–hydroxyapatite solid solution [(PbxCa1?x)5(PO4)3OH] at 25??C and an initial pH of 2.00.
  相似文献   
998.
The purpose of this study was to detect shallow landslides using hillshade maps derived from light detection and ranging (LiDAR)-based digital elevation model (DEM) derivatives. The landslide susceptibility mapping used an artificial neural network (ANN) approach and backpropagation method that was tested in the northern portion of the Cuyahoga Valley National Park (CVNP) located in northeast Ohio. The relationship between landslides and predictor attributes, which describe landform classes using slope, profile and plan curvatures, upslope drainage area, annual solar radiation, and wetness index, was extracted from LiDAR-based DEM using geographic information system (GIS). The approach presented in this paper required a training study area for the development of the susceptibility model and a validation study area to test the model. The results from the validation showed that within the very high susceptibility class, a total of 42.6 % of known landslides that were associated with 1.56 % of total area were correctly predicted. In contrast, the very low susceptibility class that represented 82.68 % of the total area was associated with 1.20 % of known landslides. The results suggest that the majority of the known landslides occur within a small portion of the study area, consistent with field investigation and other studies. Sample probabilistic maps of landslide susceptibility potential and other products from this approach are summarized and presented for visualization to help park officials in effective management and planning.  相似文献   
999.
Bogotá is located in the central Andean region of Colombia, which is frequently affected by landslide processes. These processes are mostly triggered during the rainy season in the city. This fact remarks the importance of determining what rain-derived parameters (e.g. intensity, antecedent rain, daily rain) are better related with the occurrence of landslides. For this purpose, the linear discriminant analysis (LDA), a technique derived from multivariate statistics, was used. The application of this type of analysis led to obtain simple mathematical functions that represent the probability of occurrence of landslides in Bogotá. The functions also allow to identify the most relevant variables derived from records of rainfall linked to the generation of landslides. A proof of concept using the proposed methodology was done using historic rainfall data from a 9-km2 area of homogenous climatology and geomorphology in the south part of Bogotá. Landslides needed to be grouped for the LDA. Each one of these grouping categories represents landslides that occurred in similar geomorphologic conditions. Another set of events with no landslides was generated synthetically. Results of the proof of concept show that rainfall parameters such as normalized rainfall intensity I MAP, normalized daily rainfall R MAP and rainy-days normal RDN have the best statistical correlation with the landslides observed in the zone of analysis.  相似文献   
1000.
Stress mobilisation and deformation of a slope are important for engineers to carry out reliable design of retaining systems. However, most case histories reported mainly on the response of pore water pressure (PWP), whereas knowledge about the stress deformation characteristics of slope is limited. In this study, a saprolitic soil slope was instrumented to monitor not only the responses of PWP but also horizontal stress and horizontal displacement. To assist in the interpretation of field data, a series of laboratory tests was conducted to characterise volume change behaviour of the soil taken from the site, under the effects of both net stress and suction. During a rainstorm event when positive PWP built up, a remarkably large displacement of 20 mm was recorded between 5.5- and 6-m depths, and the top 5 m of the slope exhibited translational downslope movement. This caused an increase in Bishop’s effective horizontal stress by 350 %, which reached a peak value close to 40 % of a Bishop’s effective passive stress. During the subsequent dry season when suction was recovered, an upslope rebound of 10 mm was recorded. Comparison of field and laboratory data reveals that the rebound was attributed to suction-induced soil shrinkage. This rebound led to a decrease in the Bishop’s effective horizontal stress previously built up during the storm event.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号